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Abstract

To develop a ®nite elastic constitutive equation for a real material, it is necessary to experimentally determine a
number of material functions. This is much more di�cult than determining the material constants needed for
construction of a second-order constitutive equation for the same material. So it can be advantageous to use a

second-order constitutive equation if it provides an adequate description of a material's mechanical behavior over
the deformation regimes to be considered. Of course, the second-order expansion of a constitutive relation always
provides a good description of the mechanical response for su�ciently small strains and rotations. But by neglecting

terms in these expansions which are higher than second order, we can construct a St Venant±Kirchho�-type
material model which may be applied for any deformation. In this paper we investigate the circumstances under
which such St Venant±Kirchho�-type second-order constitutive equations can successfully be used in lieu of the

fully nonlinear elastic constitutive equation to solve boundary value problems. Two nonlinear elastic materials are
considered: the generalized Blatz±Ko and the harmonic materials. For these materials we examine the performance
of constitutive equations which are second order in the displacement gradient, the Biot strain, and the Green strain.
A variety of boundary value problems are solved with these second-order constitutive equations, and the resulting

solutions are compared to the solutions obtained with the corresponding fully nonlinear constitutive equation. We
®nd that both the nature of the material and the nature of the deformation have a large impact on the performance
of these three second-order constitutive equations. Overall, the constitutive equation which is second order in the

Biot strain provides the most accurate solutions over the largest range of strains and rotations. 7 2000 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

There have been two main impediments to the solution of boundary value problems in ®nite elasticity:
the nonlinear nature of the underlying equations; and the lack of constitutive information for speci®c
elastic materials. Consequently, over much of the ®fty-year history of nonlinear elasticity, it has been
very di�cult to solve any but the simplest problems. The ®nite element and the ®nite di�erence methods
together with the accessibility of powerful computers have greatly reduced the di�culties of solving
nonlinear equations, e�ectively removing the ®rst impediment. But the obstacles to constructing ®nite
elastic constitutive equations remain.

The development of realistic ®nite elastic constitutive equations for real materials can be a very di�cult
task because it requires experimental determination of a number of material functions. Construction of a
constitutive equation to describe the mechanical behavior of complex nonlinear materials even in a
limited deformation regime can be extremely challenging. This is particularly true for materials, such as
biological tissues, for which only limited constitutive information can be obtained because accurate
experimental testing present major technical obstacles (see, for example, Humphrey, 1995).

In contrast, the development of a linear or a second-order constitutive equation requires only that a
number of material constants be determined, which is a much more tractable undertaking. For example,
to construct a nonlinear isotropic hyperelastic constitutive equation requires that the strain energy be
determined as a function of the three principal strain invariants (or an equivalent set of invariants). In
contrast, a second-order approximation to this constitutive equation requires only that ®ve constants be
determined. Thus, it can be very advantageous to use a second-order constitutive equation while
retaining the full geometric nonlinearity in a boundary value problem, provided the second-order
constitutive relation gives an adequate description of the mechanical behavior of the material over the
deformation regime that is to be modeled.

The approach of using a second-order constitutive equation for problems in which the strain may be
substantial is analogous to the approach taken by St Venant (1844) and Kirchho� (1852) in de®ning the
nonlinear St Venant±Kirchho� material. This material is based on the form of the isotropic constitutive
relation for classical linear elasticity, with the Piola±Kirchho� stress linear in the Green strain. Although
a number of di�culties have been identi®ed for the St Venant±Kirchho� material (see, for example,
Ciarlet, 1988), this nonlinear model has been employed often because of its extreme simplicity.

A number of second-order constitutive equations have been proposed, usually in the context of
isotropic materials. The vast majority of those theories are for hyperelastic materials and use the
displacement gradient as the measure of the deformation (for example, see Murnaghan, 1937; Rivlin,
1952; Toupin and Bernstein, 1961; Ogden, 1984; Lindsay, 1992; Haughton and Lindsay, 1993, 1994).
Second-order theories have also been developed for Cauchy elastic materials in terms of the displacement
gradient (see, for example, Sheng, 1955). Many of these constitutive equations are summarized and
compared in Truesdell and Noll (1965). A substantial shortcoming of these second-order constitutive
equations formulated in terms of the displacement gradient is that they do not satisfy material frame
indi�erence, so solutions to problems with large or even moderate rotations will be inherently in error.

Frame indi�erent second-order constitutive equations have also been presented: Murnaghan obtained
an explicit constitutive equation for isotropic hyperelastic materials that was second-order in the Green
strain1 (1951); Ogden gave a second-order expansion of the Kirchho� stress (1978) and a general outline

1 Unlike the situations in classical in®nitesimal elasticity and in ®nite elasticity, the choice of strain measure is important in the

derivation of a second-order theory. (This has been clearly recognized in the past; see for example, Ogden, 1984, p. 350.) This is

due to the facts that a constitutive equation which is second order in one strain measure will not be second order in a di�erent

strain measure, and the each strain measure typically contains a di�erent power of the stretch.
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of the expansion of the second Piola±Kirchho� stress (1984), both in terms of the Green strain; and
recently Hoger (1998) introduced a method that can be used to obtain a constitutive relation which is
second-order in the Biot strain from a hyperelastic material with arbitrary material symmetry.

Of course all of the various second-order constitutive relations will give, essentially, the same accuracy
over some suitably small range of strains and rotations, and those that are frame indi�erent will provide
accurate solutions for problems in which the strains are su�ciently small.

However, if these second-order relations are viewed as St Venant±Kirchho�-type constitutive
equations and used for solving problems with large strains and rotations, signi®cant di�erences in the
predicted solutions will emerge. In this circumstance one may ask which of the second-order constitutive
equations gives the solution that best approximates the solution of the fully nonlinear constitutive
theory over the largest range of deformations or strains. In addition, it would be useful to determine the
range of applicability of such St Venant±Kirchho�-type second-order constitutive equations for speci®c
materials. These are the primary issues that are addressed in this paper. Of course, the answers will
depend on the geometry of the problem, the nature of the material, and on the level of error that can be
tolerated in the solution. However, we hope to develop general guidelines as to the level of strain for
which the second-order approximate constitutive relations can be used to model certain types of elastic
materials. The fact that second-order constitutive equations formulated in terms of the displacement
gradient are not frame indi�erent is strong reason to immediately reject them for any analysis involving
®nite deformations. However, the use of such constitutive equations may be attractive due to the ease
with which they can be implemented. So we include constitutive equations which are second order in the
displacement gradient in our presentation, and illustrate both types of problems for which such
equations can be e�ectively used despite their limitations, and the large errors that result from their
indiscriminant application in ®nite deformation problems.

Any discussion of the utility of a speci®c approximate constitutive equation for solving boundary value
problems implicitly relies on the idea that the solution can be compared to a `correct' solution that is
independently obtained. Of course, given a real material, this would be done by comparing the predictions
obtained with the approximate constitutive equation to the results of the corresponding experiments. This
is the only approach that would give a de®nitive answer to whether or not a given constitutive equation is
capable of making su�ciently accurate predictions for a real material over a speci®c range of deformations.

In this paper we do not attempt to obtain such de®nitive answers for speci®c materials. Rather, we
are interested in formulating general guidelines that can aid in identifying problems and materials for
which a second-order constitutive equation may be adequate. To that end, we will compare solutions of
several boundary value problems obtained with fully nonlinear elastic constitutive equations to the
solutions obtained with second-order approximations to those constitutive equations.

Two nonlinear compressible hyperelastic constitutive equations will be considered in this paper: the
generalized Blatz±Ko material and the harmonic material. Compressible materials were selected for
consideration because many of the real materials for which second-order theories may be of interest are
compressible. These speci®c compressible materials were chosen because they have very di�erent
mechanical characteristics and because they are commonly used in the literature. For each of these fully
nonlinear constitutive equations, three distinct second-order approximations for the Cauchy stress will
be constructed: one that is second order in the displacement gradient, one that is second order in the
Biot strain, and one that is second order in the Green strain. These constitutive equations will be used
to solve four boundary value problems. For each problem the displacement ®elds and the Cauchy
stresses predicted with the second-order constitutive equations will be compared to those calculated with
the corresponding fully nonlinear constitutive relation.

Section 2 contains a brief review of background material. In Section 3 the nonlinear constitutive
equations for the Blatz±Ko and harmonic materials will be displayed and the corresponding second-
order constitutive equations will be derived. The performance of these second-order constitutive
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equations will be investigated for four boundary value problems in Sections 4±7. The problems are
simple tension of a bar, axial shear of a cylinder, circular shear of a cylinder, and bending of a
cantilever beam. The results and their implications will be discussed in Section 8.

2. Background

This section contains a review of the background information needed for the remainder of the paper.
Standard notation is used throughout (see, for example, Gurtin 1984; Malvern, 1969).

2.1. Kinematics

Let B0 represent a body in a ®xed reference con®guration in which it is unloaded and at rest. A
typical particle occupies position X in this reference con®guration. When the body deforms due to
prescribed tractions or displacements, the position of the particle originally at X is given by x=f(X).
The deformation f is a smooth one-to-one mapping. The displacement u(X) of the particle is de®ned by
u(X)=f(X)ÿX.

The deformation gradient

F�X� � rf�X� �1�
is assumed to meet det F(X) > 0. Unless required for clarity, dependence of a ®eld on X will be left
implicit in the remainder of this paper.

By the polar decomposition theorem, F can be written as

F � RU �2�
where the rotation R is proper orthogonal, and the right stretch tensor U is positive de®nite and
symmetric. The eigenvalues {l1, l2, l3} of U are called the principal stretches, and describe the ratio of
the deformed length to the original length of a material ®lament in the principal directions.

Many constitutive equations are conveniently represented in terms of the left Cauchy±Green tensor
B=FFT, which can be expressed as

B � RU 2RT: �3�
The displacement gradient H=Hu is related to the deformation gradient by

H � Fÿ 1: �4�
The symmetric part of H

E � 1
2�H�HT� �5�

is termed the elongation tensor (Truesdell and Toupin, 1960). E is most useful when the displacement
gradient is small; then it is known as the in®nitesimal strain tensor. But when the displacement gradient
is not small, the elongation tensor is not a measure of strain as it includes a contribution from the
rotation (see, e.g., Truesdell and Toupin, 1960).

In this paper we will employ two strain measures. The Biot strain, E1, is de®ned in terms of the right
stretch tensor as

E1 � Uÿ 1: �6�
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The Biot strain has a direct physical interpretation in that its eigenvalues are the principal extensions
{d1, d2, d3}, de®ned through the principal stretches as

di � li ÿ 1: �7�
We will also use the Green strain, E2, de®ned by

E2 � 1
2�FTFÿ 1�: �8�

The Green strain can be written in terms of the Biot strain as

E2 � E1 � 1
2�E1�2: �9�

As the magnitude of the Biot strain tensor approaches zero, the Green strain approaches the Biot strain.
The elongation tensor E can also be related to the Biot strain, but, in contrast to the relation between

E2 and E1, this relation depends on the rotation R. To derive this relation, we introduce the tensor P
de®ned by

P � Rÿ 1: �10�
While mathematically convenient, this tensor has no clear physical interpretation other than through its
relation to R. Note that if the rotation tensor R is close to the identity, then vPv will be small. The
elongation tensor can now be written as (see Hoger, 1993),

E � E1 � 1
2 �P� PT� � 1

2�PE1 � E1PT�: �11�

This relation clearly displays the contribution of the rotation tensor to the elongation tensor.
The principal moments of a tensor A are de®ned through

I1�A� � 1 � A

I2�A� � 1 � A2

I3�A� � 1 � A3 �12�
where � indicates the inner product. The set of principal moments will be denoted by

JA � fI1�A�, I2�A�, I3�A�g; �13�
note that for A=1,

J1 � f3, 3, 3g: �14�
The principal invariants are de®ned in terms of the principal moments by

IA � I1�A�

IIA � 1
2fI1�A�2 ÿ I2�A�g

IIIA � 1
6fI1�A�3 ÿ 3I1�A�I2�A� � 2I3�A�g: �15�
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2.2. Stress and strain energy density function

We assume the body responds elastically to deformations out of the reference con®guration, so the
constitutive equation for the Cauchy stress T can be written as a function of the deformation gradient in
terms of a response function TÃ as

T � ÃT�F�: �16�
The ®rst Piola±Kirchho� stress tensor S is de®ned in terms of T through

S � �det F�TFÿT MÃS�F�: �17�
A material is said to be hyperelastic if there exists a scalar valued function �s, called the strain energy
density function, such that

ÃS�F� � @ �s�F�
@F

: �18�

2.3. Second-order constitutive theories

Various second-order constitutive theories have been derived for isotropic hyperelastic materials.
These second-order constitutive theories are obtained by expanding the fully nonlinear constitutive
relation for the Cauchy stress2 in terms of a speci®ed measure of the deformation, and neglecting terms
which are higher than second order in this measure of deformation. Thus, in a general sense, these
second-order constitutive theories will be good approximations to the fully nonlinear constitutive
equation as long as the measure of the deformation is su�ciently small. To make this more precise, we
need to establish some notation.

Let M be a function that maps tensors into tensors. Then we will say that M(X) approaches zero
faster than X and write M(X)=o(X) as X4 0 if limX40 vM(X)v/vXv=0, where the magnitude of a tensor
A is de®ned through the inner product as jAj � �����������

A � Ap
:

The most widely recognized second-order constitutive theory for isotropic hyperelastic materials is one
that uses the displacement gradient as the measure of deformation. A number of authors have presented
this theory in equivalent forms (Truesdell and Noll, 1965; Lindsay, 1992; Haughton and Lindsay, 1993,
1994; Rivlin, 1952; Murnaghan, 1937; Toupin and Bernstein, 1961; Hoger, 1998). For our purposes, it is
convenient to use the form (Hoger, 1998)3

TH � Z1�1 � E�1� Z2E� �Z5 ÿ Z1��1 � E�21� �Z4 ÿ 1
2Z1��1 � E2�1� �2Z4 ÿ Z2 � Z1��1 � E�E

� �Z3 ÿ 3
2Z2�E 2 � 1

2Z1�1 �HTH�1� Z2�HE� EHT � 1
2HTH� � o�H2�

�19�

2 Of course a constitutive equation can be written for other measures of stress, such as the ®rst and second Piola±Kirchho� stres-

ses. Expansion of these stresses will result in di�erent second-order constitutive equations, as was recognised and illustrated by

Ogden (1984). In this paper, we use the expansion for the Cauchy stress because of its clear interpretation as the physical stress in

the deformed body. Although we do not use the expansions of the other stress measures in the examples we present in Section 4±7,

we did do the examples with expansions of both the ®rst and second Piola±Kirchho� stresses. We will comment on those results in

the discussion in Section 8.
3 It can be shown that the constants given in (19) are related to those given in Eq. (66.3) of Truesdell and Noll (1965) by

Z1=ma1, Z2=2ma2, Z3=m(a6ÿa2), Z4 � 1
2m�a5 � 2a2 ÿ a1�, and Z5=m(2a1ÿa2+a3ÿa5). To demonstrate the equivalency of the two

forms, it is necessary to use a4+a5=2a1+2a2, which is required by the assumption of hyperelasticity.
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where

Z1 �
@ 2 �s
@I1 @I1

� 4
@ 2 �s
@I2 @I2

� 9
@ 2 �s
@I3 @I3

� 4
@ 2 �s
@I1 @I2

� 6
@ 2 �s
@I1 @I3

� 12
@ 2 �s
@I2 @I3

Z2 � 2
@ �s
@I2
� 6

@ �s
@I3

Z3 � 3
@ �s
@I3

Z4 � 2
@ 2 �s
@I2 @I2

� 9
@ 2 �s
@I3 @I3

� @ 2 �s
@I1 @I2

� 3
@ 2 �s
@I1 @I3

� 9
@ 2 �s
@I2 @I3

Z5 �
1

2

�
@3 �s

@I1 @I1 @I1
� 6

@3 �s
@I1 @I1 @I2

� 9
@3 �s

@I1 @I1 @I3
� 12

@3 �s
@I1 @I2 @I2

� 36
@ 3 �s

@I1 @I2 @I3

� 27
@3 �s

@I1 @I3 @I3
� 8

@3 �s
@I2 @I2 @I2

� 36
@3 �s

@I2 @I2 @I3
� 54

@3 �s
@I2 @I3 @I3

� 27
@3 �s

@I3 @I3 @I3

�
�20�

and where all terms are evaluated on the set of principal moments at H=0, that is, on J1. The subscript
H on the stress indicates that this constitutive equation is obtained by expanding the ®nite constitutive
equation in the deformation gradient. For convenience, this equation will be referred to as the TH

theory.
Recently Hoger (1998) derived a second-order constitutive theory for an isotropic hyperelastic

material in which the Biot strain is used as the measure of deformation. The resulting second-order
constitutive relation for Cauchy stress is

TE1
�RfZ1�1 � E�1� Z2E1 � �Z2 � Z3�E2

1 � Z4�1 � E2
1 �1� �Z1 ÿ Z2 � 2Z4��1 � E1�E1

� �Z5 ÿ Z1��1 � E1� 21gRT � o�E2
1 � �21�

where the coe�cients Zi are given in (20). This equation will be referred to as the TE1
theory. It can be

shown that for deformations with R=1 (so P=0), the TE1
theory becomes identical to the TH theory. It

can also be shown that if the displacement gradient is small (which implies that both the Biot strain and
the tensor P are small), the two constitutive theories will be within o(H2). Thus, as expected, the two
constitutive theories will give similar results if not only is E1 small, as is assumed in the development of
the TE1

theory, but P is restricted as well.
Murnaghan (1951) developed a second-order constitutive equation for isotropic hyperelastic materials

in terms of the Green strain. His expression is equivalent to

TE2
� RfZ1�1 � E2�1� Z2E2 � �12Z2 � Z3�E2

2 � �Z4 ÿ 1
2Z1��1 � E2

2 �1� �Z1 ÿ Z2 � 2Z4��1 � E2�E2

� �Z5 ÿ Z1��1 � E2�21gRT � o�E2
2 � �22�

where, again, the coe�cients Zi are de®ned in (20). This constitutive equation will be referred to as the
TE2

theory. The relation between the TE1
theory and the TE2

theory was derived by Hoger (1998), who
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showed that if E1 is su�ciently small, the TE1
theory and the TE2

theory are equal to within o(E2
1). Of

course, this result does not require that the rotations be restricted in any way.

3. Constitutive equations

The second-order constitutive theory TH presented in the last section is valid only in the limit as H
approaches zero. By neglecting the terms which are o(H2), we can de®ne the corresponding St Venant±
Kirchho�-type material that is second order in H. This St Venant±Kirchho� material model, which can
be used for deformations with arbitrarily large displacement gradients, will be referred to as the TH

constitutive equation to distinguish it from the TH constitutive theory, given by (19), which can be applied
only when H is su�ciently small. Second-order St Venant±Kirchho�±type constitutive equations
corresponding to the TE1

and TE2
theories of Section 2.3 can be similarly constructed from the

corresponding constitutive theories. In the remainder of the paper these St Venant±Kirchho�±type
constitutive equations will be termed simply the second-order constitutive equations.

The purpose of this paper is to investigate the circumstances under which these second-order
constitutive equations can be used in lieu of a fully nonlinear constitutive relation for the solution of
boundary value problems. To accomplish this, we will solve a variety of boundary value problems with
the three second-order constitutive equations and compare the solutions they produce to the solutions
obtained by solving the same problems with the corresponding fully nonlinear constitutive equation.

We will consider two nonlinear elastic materials: generalized Blatz±Ko and harmonic. We chose these
two materials for study because they have quite di�erent material properties and because they are
commonly used in the literature. In this section, we recall the fully nonlinear constitutive equations for
these two materials. Using these equations, we derive the elastic constants, Zi, of the second-order
constitutive equations, and for each of the materials we display the constitutive equations which are
second order in H, E1, and E2.

3.1. Generalized Blatz±Ko material

The generalized Blatz±Ko material is a generalization of two constitutive relations that were obtained
experimentally by Blatz and Ko (1962). This constitutive equation can also be derived theoretically by
making a few simple assumptions about the nature of the material (see Beatty and Stalnaker, 1986;
Beatty, 1987).

The strain-energy density function for the isotropic, generalized Blatz±Ko material is

�s�IB, IIB, IIIB� � m0f
2

�
�IB ÿ 3� ÿ 2

q
�III q=2

B ÿ 1�
�
� m0�1ÿ f �

2

��
IIB

IIIB

ÿ 3

�
ÿ 2

q
�III ÿq=2B ÿ 1�

�
�23�

where m0 is the in®nitesimal shear modulus,

q � ÿ 2n0
1ÿ 2n0

�24�

with n0 the in®nitesimal Poisson ratio, and f is a material parameter between 0 and 1. Thus, by (17) and
(18), the Cauchy stress is

T � m0�ÿfIII �qÿ1�=2B � �1ÿ f �III ÿ�qÿ1�=2B �1� m0f

III 1=2
B

Bÿ m0�1ÿ f �
III 1=2

B

Bÿ1: �25�

This equation will be referred to as the fully nonlinear generalized Blatz±Ko constitutive equation.

T.J. Van Dyke, A. Hoger / International Journal of Solids and Structures 37 (2000) 5873±59175880



All of the results that are presented in this paper with the generalized Blatz±Ko material are
computed with

n0 � 0:25 �26�
which is a value experimentally determined by Blatz and Ko for a polyurethane foam rubber.

By substituting (23) into (20), we obtain the following coe�cients for the generalized Blatz±Ko
material:

Z1 � ÿm0q

Z2 � 2m0

Z3 � m0�4fÿ 5�

Z4 � 1
2m0q

Z5 � 1
2m0q

2�1ÿ 2f �: �27�
Using these coe�cients, we can obtain a second-order constitutive equation for the generalized Blatz±
Ko material from (19); the result is

TH � ÿm0q�1 � E�1� 2m0E� m0

�
q� 1

2
q2�1ÿ 2f �

�
�1 � E�21� m0q�1 � E2�1ÿ 2m0�1 � E�E

� 4m0� fÿ 2�E2 ÿ m0q
2
�1 �HTH�1� 2m0

�
HE� EHT � 1

2
HTH

�
: �28�

This equation will be referred to as the TH constitutive equation for the generalized Blatz±Ko material.
Similarly, we obtain the TE1

constitutive equation for the generalized Blatz±Ko material by
incorporating (27) into (21) to get

TE1
� R

�
ÿ m0q�1 � E�1� 2m0E1 � m0�4fÿ 3�E2

1 �
m0q
2
�1 � E2

1 �1� 2m0�1 � E1�E1

� m0

�
q� 1

2
q2�1ÿ 2f �

�
�1 � E1�21

�
RT �29�

and we ®nd the TE2
constitutive equation for the generalized Blatz±Ko material by using (27) with (22)

with the result

TE2
� Rfÿm0q�1 � E2�1� 2m0E2 � 4m0� fÿ 1�E2

2 � m0q�1 � E2
2 �1ÿ 2m0�1 � E2�E2

� m0�q� 1
2q

2�1ÿ 2f ���1 � E2� 21gRT: �30�

3.2. Harmonic material

The constitutive relation for harmonic materials was originally developed by John (1960, 1966), and
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was motivated primarily by mathematical convenience rather than experimental evidence. We consider
this material because it has very di�erent properties than those of the generalized Blatz±Ko material and
because it has previously been used by a number of authors (see, for example, Ogden and Isherwood,
1978; Abeyaratne and Horgan, 1984; Jafari et al., 1984).

The isotropic strain energy density function proposed by John (1960, 1966) has the form

�s�IU, IIU, IIIU� � 2m0�F�IU� ÿ IIIU � 1� �31�

where m0 is the in®nitesimal shear modulus and F is a scalar function that must satisfy certain
inequalities (see Knowles and Sternberg, 1975a), but is otherwise arbitrary. Following Haughton and
Lindsay (1993), we will take

F�IU� � IU ÿ 3� a�IU ÿ 3�2 �32�

where a is a material parameter given in terms of the Poisson ratio n0 by

a � 1ÿ n0
2�1ÿ 2n0� : �33�

All results that will be presented in this paper for the harmonic material were obtained with

n0 � 0:40625 �34�

following Haughton and Lindsay (1993).
By (17) and (18) the Cauchy stress for this material is

T � 2m0R
�
ÿ 1� 1� 2a�IU ÿ 3�

IIIU

U

�
RT: �35�

This equation will be referred to as the fully nonlinear constitutive equation for the harmonic material.
By substituting (31) and (32) into (20), we obtain:

Z1 � 2m0�2aÿ 1�

Z2 � 2m0

Z3 � ÿ2m0

Z4 � m0

Z5 � ÿm0: �36�

By using these coe�cients with (19), we obtain the TH constitutive equation for the harmonic material:

TH � 2m0�2aÿ 1��1 � E�1� 2m0E� m0�1ÿ 4a��1 � E�21� 2m0�1ÿ a��1 � E2�1
� 2m0�2aÿ 1��1 � E�Eÿ 5m0E

2 � m0�2aÿ 1��1 �HTH�1� 2m0�HE� EHT � 1
2HTH�: �37�

Eq. (36) together with (21) gives the TE1
constitutive equation for the harmonic material:
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TE1
� Rf2m0�2aÿ 1��1 � E1�1� 2m0E1 � m0�1 � E2

1 �1� 2m0�2aÿ 1��1 � E1�E1

� m0�1ÿ 4a��1 � E1� 21gRT:
�38�

Substitution of (36) into (22) provides the TE2
constitutive equation for the harmonic material:

TE2
� Rf2m0�2aÿ 1��1 � E2�1� 2m0E2 ÿ m0E

2
2 � 2m0�1ÿ a��1 � E2

2 �1� 2m0�2aÿ 1��1 � E2�E2

� m0�1ÿ 4a��1 � E2�21gRT: �39�

4. Simple tension of a bar

As our ®rst boundary value problem, we consider simple tension of a bar, a problem which can be
solved in closed form. Let the body be an isotropic homogeneous rectangular bar with constant cross
section and length L. Without loss of generality, we take the x-axis of a Cartesian coordinate system to
coincide with the axis of the beam and ®x the origin of this system on one of the faces perpendicular to
this axis. This face is then held ®xed against motion in the x-direction and is otherwise unloaded. The
face at the opposite end is subjected to a uniform displacement in the x-direction and is otherwise
unloaded. The remaining faces are all traction free.

With the displacement ®eld denoted by u(X, Y, Z ), where (X, Y, Z ) is the initial location of a
particle, the displacement boundary condition on the ®xed face is

u�0, Y, Z � � ex � 0 �40�
where ex is a unit vector in the x-direction. The displacement boundary condition on the displaced face
is

u�L, Y, Z � � ex � �u �41�
with L the length of the bar and u- the prescribed displacement.

Because the material is isotropic, we assume a displacement of the form

ux � �l1 ÿ 1�X
uy � �l2 ÿ 1�Y
uz � �l2 ÿ 1�Z: �42�

With these displacements,

F �
24 l1 0 0
0 l2 0
0 0 l2

35, �43�

U=F, and R=1,
Since the deformation is uniform, the stresses are constant throughout the bar, and the equation of

equilibrium is automatically satis®ed.
Boundary condition (41) requires that the principal stretch satisfy

l1 � �u

L
� 1: �44�
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4.1. Generalized Blatz±Ko material

The results for various values of the material parameter f in the generalized Blatz±Ko material are
similar, so only the results for f=1 will be presented.

4.1.1. The fully nonlinear constitutive equation
The solution will ®rst be obtained for the fully nonlinear generalized Blatz±Ko material. Substituting

(43) into (25), we ®nd the components of the Cauchy stress to be

Txx � m0�l2
1 ÿ �l1l2

2 � q�
1

l1l
2
2

Tyy � Tzz � m0�l2
2 ÿ �l1l2

2 � q�
1

l1l
2
2

�45�

with all of the shear stresses being zero. As noted previously, the equilibrium equations are trivially
satis®ed. The zero traction boundary conditions on the lateral surface require that Tyy=0 and Tzz=0;
therefore, since the denominator in (45)2 cannot be 0,

l2 � l q=�2�1ÿq��
1 �46�

where l1 is given by (44) to satisfy the boundary conditions. With (46) and (45)1 yields

Txx � m0�l�2qÿ1�=�qÿ1�1 ÿ lÿ11 �: �47�

4.1.2. The TH and TE1
constitutive equations

Since R01 for this problem, constitutive equations TH and TE1
yield identical results.

With n0=0.25 the TH and the TE1
constitutive equations for the generalized Blatz±Ko material, (28)

and (29), give the following non-zero Cauchy stress components:

Txx � m0�ÿ25� 19l1 ÿ 3l2
1 � 26l2 ÿ 10l1l2 ÿ 7l2

2 �

Tyy � Tzz � m0�ÿ25� 13l1 ÿ 2l2
1 � 32l2 ÿ 8l1l2 ÿ 10l2

2 �: �48�
Again, the equilibrium equations are trivially satis®ed, and Tyy and Tzz must vanish by the zero traction
boundary condition on the lateral surface. This condition can only be satis®ed if

l2 �
16ÿ 4l1 ÿ

����������������������������
6� 2l1 ÿ 4l2

1

q
10

or l2 �
16ÿ 4l1 �

����������������������������
6� 2l1 ÿ 4l2

1

q
10

: �49�

With the fully nonlinear generalized Blatz±Ko constitutive relation, there is a unique relation between l2
and l1. But here, for the TH and the TE1

constitutive equation, there are two possible relations. It is
natural to expect that l24 1 as l14 1 (that is, as u-4 0) for the solution to be physically meaningful.
This condition is satis®ed by the solution given by (49)1; it is not the case for the solution given by
(49)2. In fact one can see from (49)2, that l24 1.4 as l14 1. So, we will take l2 to be given by (49)1.

Substitution of (49)1 into (48)1 gives
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Txx � m0

 
ÿ87� 71l1 � 8l2

1 � �ÿ18� 22l1�
����������������������������
6� 2l1 ÿ 4l2

1

q
50

!
�50�

where l1 is ®xed by the boundary condition through (44).

4.1.3. The TE2
constitutive equation

Substitution of deformation gradient (43) into the TE2
constitutive equation for the generalized Blatz±

Ko material, (30), gives non-zero stress components

Txx � m0
8
�ÿ65� 50l2

1 ÿ 9l41 � 60l2
2 ÿ 20l2

1 l
2
2 ÿ 16l42�

Tyy � Tzz � m0
8
�ÿ65� 30l2

1 ÿ 5l41 � 80l2
2 ÿ 16l2

1 l
2
2 ÿ 24l42�: �51�

The equilibrium equations are trivially satis®ed. The zero traction boundary condition on the lateral
surface implies that Tyy and Tzz vanish, so (51)2 produces four solutions for the relation between l2 and
l1. Of these, two solutions give negative values for l2 which is not physically meaningful, and one gives
large values for l2 even as l1 approaches 1, which is also not physically realistic. The remaining solution
is

l2 �

���������������������������������������������������������
10ÿ 2l2

1 ÿ
�����������������������������
5
2 � 5l2

1 ÿ 7
2l

4
1

qr
���
6
p : �52�

By substituting this result for l2 into the formula for Txx in (51) we obtain

Txx � m0

 
ÿ95� 110l2

1 ÿ 23l41 � �5� 7l2
1 �

�������������������������������
5� 10l2

1 ÿ 7l41

q
72

!
�53�

where, again, l1 is given in terms of the prescribed displacement by (44).

4.1.4. Comparison of results

The solutions for this boundary value problem are displayed in Fig. 1. The values of the transverse
displacement, l2ÿ1, obtained with the ®nite and the second-order generalized Blatz±Ko constitutive
equations are displayed in the upper part of that ®gure, and the values of the normalized stress Txx/m0
are displayed in the lower part. Recall that R=1 for this problem so TH and TE1

give the same solution.
Of course, for su�ciently small values of u-/L, all of the results coalesce.

Both second-order constitutive equations fail to give real solutions for l2 when u-, and, therefore, l1, is
larger than a certain critical value; for the TH and TE1

constitutive equations this critical value is l1=3/2
and for the TE2

constitutive equation this critical value is l1 � �1=
���
7
p �

��������������������
5� 2

�����
15
pp

11:35: More precisely,
the lateral traction boundary condition, Tyy=0, yields complex values for l2 for values of l1 larger than
these critical values4. As can be seen from Fig. 1, both the stress and the displacement predicted by the
second-order constitutive equations radically diverge from those provided by the fully nonlinear
constitutive equation well before these critical values are reached.

4 The other solutions to the equation Tyy=0 also become complex for values of l1 above this critical value.
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In order to compare the utility of the second-order constitutive equations, we will determine the

percent di�erences in the solutions as follows. For each component of displacement and stress, we will

calculate the di�erence between the value obtained with the second-order constitutive equation and the

value obtained with the fully nonlinear equation. This di�erence will be divided by the value of the

component obtained with the fully nonlinear constitutive equation, yielding the percent di�erence. These

percent di�erences must, of course, be compared at the same level of the loading parameter, in this case,

the same displacement u-. This loading parameter, however, is speci®c to the problem being solved and

depends on the geometry of the body and the nature of the loading. It does not, therefore, lend itself

directly to any understanding of the nature of the constitutive equations. On the other hand, the level of

strain in the problem gives some idea of the response of the material itself. Therefore, we choose to

display the percent di�erences in the displacement and stress components in terms of the magnitude of

the Biot strain calculated from the fully nonlinear constitutive equation in all cases5.

The percent di�erence in the displacement and the stress for simple tension of a bar are shown in

Fig. 2. The TH and TE1
constitutive equations give substantially smaller percent di�erences than the TE2

constitutive equation at all levels of strain. For example, for a Biot strain magnitude of 15%, the TH

and TE1
constitutive equations give a percent di�erence in the displacement of 2.2% while the TE2

Fig. 1. Displacement and normal stress for a bar of generalized Blatz±Ko material with f=1 in simple tension.

5 For all the problems that are presented in this paper, the di�erence between the strain measures calculated using the results

from the fully nonlinear constitutive equation and calculated from the results obtained from the second-order constitutive equation

is less than 10% even at the largest level of strain.
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constitutive equation gives a percent di�erence of 6.8%. The information in this ®gure can also be
viewed in an alternative manner: given a particular value for the acceptable percent di�erence, the TH

and TE1
constitutive equations give an acceptable solution to a higher level of strain than does the TE2

constitutive equation. If, for example, it is necessary to obtain solutions with less than 5% di�erence in
both the displacement and the stress, the solution obtained with the TH and TE1

constitutive equations is
acceptable to a strain of approximately 21%, whereas the TE2

constitutive equation fails to meet this
level of accuracy after a strain of 13% has been reached.

The range of strains for which a second-order constitutive equation is a good model for the material
will depend, of course, on the amount of percent di�erence that can be tolerated in the solution. We will
use 5% di�erence throughout this paper only for illustration. If only general trends are needed, larger
percent di�erences may be acceptable. If very accurate predictions are needed, then the second-order
constitutive equations would be useful over a much smaller range of strains. Note that the curves in
Fig. 2 do not cross, so the solution provided by the TH and TE1

constitutive equations is more accurate
than that of the TE2

constitutive equation at any strain magnitude.

4.2. Harmonic material

The procedure for analyzing the extension of a homogeneous bar composed of harmonic material

Fig. 2. Percent di�erence in displacement and normal stress for a bar of generalized Blatz±Ko material with f = 1 in simple ten-

sion.
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parallels the analysis presented above for a bar made of the generalized Blatz±Ko material, so details
will be omitted.

4.2.1. The fully nonlinear constitutive equation
By substituting (43) into (35) and using the zero traction condition on the lateral surfaces, we ®nd

that for a homogeneous bar of harmonic material

l2 � 1ÿ 6a� 2al1
l1 ÿ 4a

and Txx � ÿ2m0 �
2m0l1�l1 ÿ 4a�
1ÿ 6a� 2al1

�54�

where the boundary condition (41) requires that l1 meet (44).

4.2.2. The TH and TE1
constitutive equations

As previously noted, since R=1 for this deformation, the TH and TE1
constitutive equations give

identical results. When the deformation gradient, (43), is substituted into either (37) or (38) and the zero
traction condition on the lateral surfaces is applied, the only physically realistic choice of l2 is found to
be

l2 � 1

8aÿ 2
�ÿ4� 18a� l1 ÿ 6al1 ÿ �ÿ4� 8a� 36a2 � 8l1 ÿ 28al1 ÿ 24a2l1 ÿ 3l2

1 � 12al2
1

� 4a2l2
1 �1=2� �55�

and the corresponding expression for Txx is

Txx � 2m0�5ÿ 18a� 6al1 ÿ 8l2 � 24al2 ÿ 4al1l2 � 3l2
2 ÿ 8al2

2 �: �56�

4.2.3. The TE2
constitutive equation

Combining (39) and (43), and the zero traction condition on the lateral surfaces, we obtain

l2 � 1����������������
3ÿ 12a
p �6ÿ 26aÿ l2

1 � 6al2
1 � �ÿ12� 42a� 28a2 � 24l2

1 ÿ 116al2
1 � 72a2l2

1 ÿ 8l41

� 42al41 ÿ 38a2l41�1=2�1=2 �57�

where non-physical choices of l2 have been neglected, and we also obtain

Txx � m0�4ÿ 27
2 a� 5al2

1 ÿ 1
2l

4
1 ÿ 6l2

2 � 16al2
2 ÿ 2al2

1 l
2
2 � 2l42 ÿ 5al42�: �58�

4.2.4. Comparison of results
The percent di�erences in the predicted displacement and the predicted stress Txx obtained with the

second-order constitutive equations are shown in Fig. 3. For the harmonic material, the TH and TE1

constitutive equations give more accurate solutions than does the TE2
constitutive equation for both the

displacement and the stress, paralleling the results obtained for the generalized Blatz±Ko material.
However, for harmonic materials all percent di�erences are much smaller: at a strain of 15%, the
percent di�erence in the displacement from the TH and TE1

constitutive equations is 0.2% while for the
TE2

constitutive equation, the percent di�erence is 1.3%. Further, the percent di�erences in the
components of both the displacement and the stress remain smaller than 5% for strain in excess of 25%.

Recall from Section 4.1 that for simple tension of a bar made of generalized Blatz±Ko material, each

T.J. Van Dyke, A. Hoger / International Journal of Solids and Structures 37 (2000) 5873±59175888



second-order constitutive equation leads to governing equations which have no real solutions for strains
above some critical value. Similarly, for simple tension of a bar composed of harmonic material, the TE2

constitutive equation leads to governing equations which have no real solutions for strains above
vE1v=63%. But the TH and TE1

constitutive equations lead to governing equations which have real
solutions for arbitrarily large strains.

4.3. Summary: simple tension of a bar

The extremely simple problem of a homogeneous bar in tension illustrates several points:

. As expected, when the deformation involves no rotation, the TH and TE1
constitutive equations

become identical and, therefore, the solutions are the same.
. The magnitude of the percent di�erence in the solution obtained with the second-order constitutive

equations depends on the nature of the material. The percent di�erences for a bar composed of a
harmonic material are much smaller than those calculated for a bar made of a generalized Blatz±Ko
material. The relative performance of the various second-order constitutive equations, however,
remained similar for this problem.

. Solutions obtained with constitutive equations that are second order in di�erent measures of strain
can vary substantially. For the case of a bar in simple tension, the TH and TE1

constitutive equations
produce solutions with substantially smaller percent di�erences than does the TE2

constitutive
equation. This observation holds true for both the generalized Blatz±Ko and the harmonic materials.

Fig. 3. Percent di�erence in displacement and normal stress for a bar of harmonic material in simple tension.
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. If a second-order constitutive equation is used to solve a problem, there may be levels of strain above
which the equations have no physically meaningful solutions. This may be the case even if there are
physically meaningful solutions to the problem when it is solved using the fully nonlinear constitutive
equation at the same levels of strain. This was seen for both the TE2

constitutive equation and the TH

and TE1
constitutive equations; however, the TH and TE1

constitutive equations either had a higher
limiting value than the TE2

constitutive equation or no limiting value.

5. Axial shearing of a circular cylinder

Next we consider the axial (telescopic) shearing of a circular cylinder. A hollow cylindrical tube of
homogeneous material is bound on its inner radius to a ®xed rigid shaft. At the outer radius the tube is
subjected to a uniformly distributed axial shearing force. The tube is assumed to be long so that end
e�ects can be ignored, and the deformation is assumed to be axisymmetric.

In cylindrical coordinates, the body initially occupies the region

Ri < R < Ro

ÿL < Z < L �59�
where Ri is the inner radius, Ro is the outer radius, and 2L is the length of the tube. With the
assumption of axisymmetry, the physical components of the displacements can be written as

ur � ur�R�

uy � 0

uz � uz�R� �60�
where ur, uy, and uz are the radial, circumferential, and axial physical components of the displacement of
a point originally at radial location R.

The boundary conditions on the inner radius are

ur�Ri � � 0

uz�Ri � � 0 �61�
and on the outer radius the dead load boundary conditions can be written as

Srr�Ro� � 0

Szr�Ro� � V

pRoL
�62�

where Srr and Szr are physical components of the ®rst Piola±Kirchho� stress and V is the total shear
force on the outer surface.

In presenting the results it will be convenient to nondimensionalize the lengths by the inner radius of
the tube Ri and to nondimensionalize the stresses by the value m0. We will consider a tube with
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Ro

Ri

� 2: �63�

A general ®nite element program was developed to solve this problem and the problems that will be
presented in Sections 6 and 7.

5.1. Generalized Blatz±Ko material

For this problem, we will discuss the results for the generalized Blatz±Ko material with both f = 0
and f=1.

Fig. 4. Displacement for a circular cylinder of generalized Blatz±Ko material with f = 0 in axial shear with a total shear force of

V=1.5pm0RiL.
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5.1.1. Material parameter f= 0
When the shear force is su�ciently small, the strains in the tube will of course be small, and the

displacements and stresses calculated with each of the constitutive equations will coincide. As the shear
force is increased, the results obtained with the various constitutive equations diverge. For this
deformation, the rotation tensor R $ 1, so the TH constitutive equation and the TE1

constitutive
equation will give di�erent solutions.

Because the deformation is not homogeneous, the di�erences in the solutions obtained with the
various constitutive equations will depend on location. This can be seen in Fig. 4, which shows the

Fig. 5. Cauchy stress for a circular cylinder of generalized Blatz±Ko material with f= 0 in axial shear with a total shear force of

V=1.5pm0RiL.
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radial and axial components of the displacement for a total shear force of 1.5pm0RiL. As expected, since
there is a displacement boundary condition on the inner boundary, the largest percent di�erences in the
displacement are at the outer radius. The Cauchy stresses calculated with each of the four constitutive
equations are displayed in Fig. 5. The distribution of the magnitudes of E1 and of P for this loading are
displayed in Fig. 6; the average6 of vE1v is 11.9% and the average value of vPv (where, recall, P=Rÿ1) is
11.8%.

For the bar in simple tension, it was easy to calculate the percent di�erence for each of the solutions
because the deformation was homogeneous. In this problem, however, the deformation is
inhomogeneous. Therefore, the percent di�erence in the displacement and stress components obtained
with the second-order constitutive equations will vary with position. To streamline our presentation, we
will de®ne a scalar measure of the percent di�erence. Let z(X, b ) represent a quantity of interest (such
as a component of displacement or stress) at location X for a value b of the loading parameter (which
for this problem is the total shear force V ). We will use znl(X, b ) to denote the value of this quantity
obtained by using the fully nonlinear constitutive equation and z2nd(X, b ) to denote the value of this
quantity obtained by using a second-order constitutive equation. De®ne

max
ÅX2B

��znl� �X, b� ÿ z2nd� �X, b�
��

max
X2B

��znl�X, b��� �64�

Fig. 6. Magnitude of strain and rotation for a circular cylinder of generalized Blatz±Ko material with f= 0 in axial shear with a

total shear force of V=1.5pm0RiL.

6 The average used here and for the circular shear problem is a radial average, i.e., the magnitude of the strain is calculated at lo-

cations equally spaced radially and averaged. It is not a volume average.
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as the percent di�erence for z. These percent di�erences will be displayed versus the maximum value of
vE1v found throughout the body where the value of vE1v is determined with the fully nonlinear
constitutive equation.

The percent di�erences in the displacement components are shown in Fig. 7 and the percent
di�erences in the non-zero components of the Cauchy stress are displayed in Fig. 8. The percent
di�erences for the radial±axial shear stress are very small; so small, in fact, that their curves barely rise
above the horizontal axis. This feature is unique to this component of the stress since, due to the
geometry of the body and loading, this component depends on the nature of the constitutive equation
only through the small radial displacement.

Examination of Figs. 7 and 8 establishes that for the problem of axial shear of the generalized Blatz±
Ko material with f = 0, the TH constitutive equation gives the smallest percent di�erence in the
components of the displacement and the stress, and the TE2

constitutive equation gives the largest

Fig. 7. Percent di�erence in physical components of displacement for a circular cylinder of generalized Blatz±Ko material with

f=0 in axial shear.
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percent di�erences. For example, when the maximum magnitude of the Biot strain reaches 15%, the
percent di�erence in the calculated axial stress is 4.1% for the TH constitutive equation, 10.0% for the
TE1

constitutive equation, and 41.6% for the TE2
constitutive equation. Alternatively, if the percent

di�erences in the displacement and stress components must be limited to a speci®ed value, the TH

constitutive equation can be used over the greatest range of strain. For example, if the percent
di�erences are limited to 5%, the TH constitutive equation can be used to a strain vE1vmax of 16.5%,
while the TE1

constitutive equation fails to meet this level of accuracy after a strain of 11.0% is reached,
and the TE2

constitutive equation fails to meet this level of accuracy after a strain of only 6.3% has been
reached.

Fig. 8. Percent di�erence in physical components of Cauchy stress for a circular cylinder of generalized Blatz±Ko material with

f=0 in axial shear.

T.J. Van Dyke, A. Hoger / International Journal of Solids and Structures 37 (2000) 5873±5917 5895



For this problem it is not possible to obtain smooth solutions with the TE2
constitutive equation when

vE1vmax exceeds approximately 25% or with the TE1
constitutive equation when vE1vmax exceeds

approximately 18%. Recall that this loss of physically meaningful solutions was also observed for the
second-order constitutive equations with the bar in simple tension. Here, as in that case, the limiting
strain is higher for the TE1

constitutive equation than for the TE2
constitutive equation.

5.1.2. Material parameter f= 1
For the generalized Blatz±Ko material with f = 1, the de®nitions B=FFT and H=Fÿ1 allow the

constitutive equation (25) to be rewritten as

T � m0�ÿIII �qÿ1�=2B � III ÿ1=2B �1� m0III
ÿ1=2
B �H�HT� � m0III

ÿ1=2
B HHT: �65�

For a problem in which the deformation is isochoric, this constitutive equation is exactly second-order

Fig. 9. Percent di�erence in physical components of displacement for a circular cylinder of harmonic material in axial shear.
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in the displacement gradient H. Thus, in such a problem, the TH constitutive equation will give the same
solution as the fully nonlinear generalized Blatz±Ko constitutive equation7.

Polignone and Horgan (1992) established that axial shear of the generalized Blatz±Ko material with
f = 1 gives rise to an isochoric deformation. Thus, for this problem, the TH constitutive equation will
give the same solution as is obtained with the fully nonlinear constitutive equation. Our calculations
produced this expected result.

Fig. 10. Percent di�erence in physical components of Cauchy stress for a circular cylinder of harmonic material in axial shear.

7 The generalized Blatz±Ko constitutive equation with f=1 will not be second-order in H for a general deformation because IIIB
must also be expanded in H in that case. Therefore, for a general deformation, the TH constitutive equation will not give the same

solution as the fully nonlinear constitutive equation.
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We note that the TE1
constitutive equation gives more accurate results than does the TE2

constitutive
equation for this problem, which parallels previous ®ndings. For example, when vE1vmax reaches 15%,
the TE1

constitutive equation gives a percent di�erence in the axial displacement of 0.6% and the TE2

constitutive equation gives a percent di�erence of 1.3%. Because of the special nature of this problem,
we will not display the results obtained.

5.2. Harmonic material

The results for axial shear of a cylinder composed of harmonic material are displayed in Figs. 9 and
10 as functions of vE1vmax. Unlike the case of the generalized Blatz±Ko material, for the harmonic
material both the TE1

and the TE2
constitutive equations yield smaller percent di�erences than does the

TH constitutive equation. For example, when vE1vmax reaches 15%, the percent di�erence in the axial
stress for the TE1

constitutive equation is 1.2%, and the percent di�erence for the TE2
constitutive

equation is 1.3%, while the percent di�erence for the TH constitutive equation is 4.8%. Of course, this
implies that the TE1

constitutive equation can be used over a larger range than the other two constitutive
equations if the percent di�erences are to remain below a speci®ed level. For example, if the percent
di�erences in each of the components of displacement and stress is to be limited to 5%, the TE1

constitutive equation can be used up to values of vE1vmax of 27.2% while the TE2
and the TH constitutive

equations can only be used for values of vE1vmax less than 19.5 and 15.3%, respectively.

5.3. Summary: axial shearing of a circular cylinder

The results obtained from this problem when the size of the strains and rotations become large
illustrate the following points:

. As expected, the percent di�erences in the components of the displacement and stress obtained using
the second-order constitutive equations are a function of position for an inhomogeneous deformation.

. The nature of the material can a�ect the magnitude of the percent di�erences obtained with the
second-order constitutive equations and even the relative performance of the di�erent second-order
equations. As for a bar in simple tension, the percent di�erences obtained for axial shearing of a
cylinder using the second-order constitutive equations for the harmonic material are smaller than the
percent di�erences obtained for the generalized Blatz±Ko material. In the axial shearing case,
however, the material a�ects which of the second-order constitutive equations gives the smallest
percent di�erences with the TH constitutive equation giving the smallest percent di�erences for the
generalized Blatz±Ko material (in fact, if f = 1, the TH constitutive equation gives zero percent
di�erence) and the TE1

constitutive equation giving the smallest percent di�erences for the harmonic
material.

. Constitutive equations that are second-order in a certain measure of the strain may yield smaller
percent di�erences for some components of the displacement and the stress than the other second-
order constitutive equations while yielding larger percent di�erences for other components. For
example, for the axial shearing of a cylinder composed of harmonic material, the TE2

constitutive
equation gives smaller percent di�erences for the axial deformation than either of the other two
second-order constitutive equations; however, when taking all components of the displacements and
stresses into account, the TE1

constitutive equation gives results that are closest to those from the fully
nonlinear constitutive equation.

. As previously noted for the bar in simple tension, the TE2
constitutive equation fails to have

physically meaningful solutions at lower levels of strain than either the TE1
or the TH constitutive

equations.
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6. Circular shear of a circular cylinder

We now turn to the circular, or circumferential, shear of a hollow cylindrical tube of homogeneous
material. The material is bound at its inner radius to a ®xed rigid shaft and at its outer radius to a rigid
concentric shell which is twisted about the common axis through a prescribed angle. The tube is
assumed to be long enough to ensure that end e�ects can be neglected, and the deformation is assumed
to be axisymmetric.

The body occupies the region de®ned by

Ri < R < Ro

ÿL < Z < L �66�
where Ri is the inner radius, Ro is the outer radius, and 2L is the length of the tube.

The physical components of the displacement are assumed to have the form

ur � ur�R�

uy � uy�R�

uz � 0 �67�
where ur, uy and uz are the radial, circumferential, and axial physical components of the displacement of
a point originally located at radius R.

The boundary conditions on the inner surface are

ur�Ri � � 0

uy�Ri � � 0 �68�
and on the outer surface the displacement boundary conditions are

ur�Ro� � Ro�1ÿ sin f�

uy�Ro� � Ro cos f �69�
where f is the prescribed rotation of the outer cylinder.

It is convenient to nondimensionalize the lengths by the inner radius of the tube Ri and the stresses by
m0. We will consider a tube with

Ro

Ri

� 2: �70�

6.1. Generalized Blatz±Ko material

6.1.1. Material parameter f= 1
Fig. 11 shows the displacements obtained using the fully nonlinear and the three second-order

constitutive equations for the generalized Blatz±Ko material with an outer shell rotation of 0.20 rad.
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The non-zero physical components of the Cauchy stress obtained for this problem are shown in Fig. 12.

As expected, the percent di�erences in the stress components are signi®cantly larger than the percent

di�erences in the displacement components because the displacements at both the inner and the outer

radii are prescribed.

For f=0.20 rad, the average8 value of vE1v obtained using the fully nonlinear constitutive equation is

18.9% and the average value of vPv is 37.4%. The distributions of vE1v and vPv in the cylinder are shown

in Fig. 13. By comparing this ®gure to Fig. 6, we see that the average value of the rotation is higher for

Fig. 11. Displacement for a circular cylinder of generalized Blatz±Ko material with f= 1 in circular shear with an outer shell ro-

tation of 0.20 rad.

8 The average used here is a radial average.
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this problem than it is in the axial shearing problem even though the maximum rotation in the two

problems is approximately the same.

The percent di�erences in the physical components of the displacement and the stress are shown in

Figs. 14 and 15, respectively. Note that in all the cases (except for slightly more accurate results for the

circumferential component of the displacement with the TH constitutive equation) the percent di�erences

associated with the solutions from the TE1
constitutive equation are smaller than the percent di�erences

from the other two second-order constitutive equations. For example, when the maximum value of vE1v
is 15%, the percent di�erence in the radial stress is 0.3% for the TE1

constitutive equation, 0.8% for the

TE2
constitutive equation, and 2.3% for the TH constitutive equation. With the criteria that the percent

di�erence in all components of the displacement and stress remain below a speci®ed threshold, Figs. 14

Fig. 12. Cauchy stress for a circular cylinder of generalized Blatz±Ko material with f= 1 in circular shear with an outer shell ro-

tation of 0.20 rad.
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and 15 show that the TE1
and the TE2

constitutive equations are useful over a larger range of strain than
is the TH constitutive equation. For example, for a maximum acceptable percent di�erence of 5%, the
allowable range of vE1v for the TE1

constitutive equation goes to 15.2%, and the TE2
constitutive

equation can be used up to a strain of 13.2%, whereas the TH constitutive equation produces 5%
di�erences at strains of 6.6%.

6.1.2. Material parameter f= 3/4
It was shown by Haughton (1993) and Polignone and Horgan (1994) that for circular shearing of the

Blatz±Ko material with f= 3/4, the deformation is isochoric. So, by analogy with the problem of axial
shearing of the Blatz±Ko material with f = 1, it might be expected that in this problem the TH

constitutive equation will also be exact. This is not the case, however, because the term

ÿm0�1ÿ f �
III 1=2

B

Bÿ1 �71�

which appears in the constitutive equation when f$1, is not second-order in H even if IIIB=1.
In fact, the percent di�erences for the circular shearing problem with the Blatz±Ko material with f=

3/4 are similar to those obtained for f = 1. For example, the TE1
constitutive equation gives a percent

di�erence in the radial stress of 0.4% for vE1vmax=15%, the TE2
constitutive equation gives a percent

di�erence in the radial stress of 0.8%, and the TH constitutive equation gives a percent di�erence of
2.0%.

6.1.3. Material parameter f= 0
As was shown by Knowles and Sternberg (1975b) and illustrated by Wineman and Waldron (1995),

the equations of elastostatics for this problem lose ellipticity for su�ciently large deformations. This
causes numerical di�culties in obtaining a solution. It is possible, however, to obtain some results, and

Fig. 13. Magnitude of strain and rotation for a circular cylinder of generalized Blatz±Ko material with f=1 in circular shear with

an outer shell rotation of 0.20 rad.
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these results show trends similar to results obtained for other values of the material parameter f. For
example, at maximum of vE1v of about 9.5%, the percent di�erence in the radial stress calculated using
the TE1

constitutive equation is about 0.1%, using the TE2
constitutive equation the percent di�erence is

about 0.6%, and using the TH constitutive equation the percent di�erence is about 0.8%. While these
percent di�erences are quite small, it can be expected that the relative performance of the three second-
order constitutive equations would continue to higher levels of vE1v since, for all the problems studied, in
only a very few cases is there a di�erence between the relative performance of the second-order
constitutive equations for small values of vE1v and larger values of vE1v.

6.2. Harmonic material

The percent di�erences in the displacement components and the non-zero components of the Cauchy
stress obtained with the second-order constitutive equations for the harmonic material are displayed in
Figs. 16 and 17, respectively. For all components of the displacement and stress, the TH constitutive
equation yields larger percent di�erences than does the TE1

constitutive equation. For example, when

Fig. 14. Percent di�erence in physical components of displacement for a circular cylinder of generalized Blatz±Ko material with f

=1 in circular shear.
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vE1vmax reaches 15%, the percent di�erence in the radial stress is 3.5% for the TH constitutive equation,
but only 0.3% for the TE1

constitutive equation. On the other hand, for some of the components the TE2

constitutive equation yields better results than the TE1
constitutive equation while for other it yields

worse results. If all of the components of the displacement and stress are restricted to have percent
di�erences below some speci®ed value, then the TE1

constitutive equation has the greatest range of
applicability. For example, if the percent di�erences are restricted to 5%, the TE1

constitutive equation
can be used up to values of vE1vmax of 48.2% while the TE2

constitutive equation can only be used up to
18.5% strain and the TH constitutive equation only up to 18.1% strain.

Fig. 15. Percent di�erence in physical components of Cauchy stress for a circular cylinder of generalized Blatz±Ko material with f

=1 in circular shear.
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6.3. Summary: circular shear of a circular cylinder

The problem of circular shear of a cylinder illustrates that:

. As expected, the presence of a substantial rotation can dramatically reduce the accuracy of the
solution obtained with the TH constitutive equation. This e�ect can be large enough to overcome any
advantage that the TH constitutive equation may have in describing a particular material. For
example, even though the TH constitutive equation gave the smallest percent di�erences for the axial
shearing of a cylinder of a generalized Blatz±Ko material, for the circular shearing of a cylinder of a
generalized Blatz±Ko material the TH constitutive equation gave the largest percent di�erences. This
is, of course, a consequence of the fact that the TH constitutive equation is not objective and the rigid
body rotations are larger in circular shearing than axial shearing. It should be noted, however, that
the di�erence in the magnitude of the rotations for the two problems is only moderate, but this
di�erence has a large impact on the accuracy of the solution.

. As with the other examples, the nature of the material can a�ect the percent di�erences in the
solutions obtained using a second-order constitutive equation. For example, for the generalized Blatz±

Fig. 16. Percent di�erence in physical components of displacement for a circular cylinder of harmonic material in circular shear.
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Ko material the percent di�erences are larger than the percent di�erences for the harmonic materials
in both axial shearing and circular shearing.

7. Bending of a cantilever beam

The ®nal problem we consider is bending of a cantilever beam. Since the rotations in a beam are
large, we expect the TH constitutive equation to produce solutions with large percent di�erences. A
rectangular beam of homogeneous material is cantilevered at one end and the bottom edge of the other

Fig. 17. Percent di�erence in physical components of Cauchy stress for a circular cylinder of harmonic material in circular shear.
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end is displaced transversely to its axis by a prescribed amount. We assume the beam is su�ciently
jthick in the direction perpendicular to the plane of the beam that a plane strain condition can be
assumed9.

The body initially occupies a region given by

Fig. 18. Displacement for a cantilever beam of generalized Blatz±Ko material with f=0 in bending with tip displacement d=h � 10:

9 Results were also obtained for a beam assuming a plane stress condition and for a beam with a prescribed thickness. These

results are very similar to the results obtained using the plane strain assumption, so because they yield no additional insights, they

will not be presented here.
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0 < X < L

0 < Y < h

0 < Z < w �72�
where L is the length of the beam, h the height, and w the width.

Under the plane strain assumption the components of the displacement can be written as

ux � ux�X, Y �
uy � uy�X, Y �
uz � 0 �73�

Fig. 19. Cauchy stress for a cantilever beam of generalized Blatz±Ko material with f=0 in bending with tip displacement d=h � 10:
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where ux, uy, and uz are the axial, transverse, and out-of-plane displacements of a point originally at the
location de®ned by (X, Y, Z ).

The cantilever end is modeled by the displacement boundary conditions10

ux�0, Y � � 0, uy�0, 0� � 0: �74�
The displacement at the free end is prescribed by the boundary condition

uy�L, 0� � ÿd �75�
where d is the amount of the displacement. The remaining boundary conditions all specify that the
tractions are zero.

In presenting the results, we will nondimensionalize the lengths by the height h and the stresses by m0.
We will consider a beam with

L

h
� 20: �76�

7.1. Generalized Blatz±Ko material with f= 0

Fig. 18 shows the axial and transverse11 components of the displacement along the upper surface for a

Fig. 20. Magnitude of strain and rotation for a cantilever beam of generalized Blatz±Ko material with f = 0 in bending with tip

displacement d=h � 10:

10 The second of these boundary conditions creates a stress concentration in the lower, left-hand corner; however, an examination

of this stress concentration, including a convergence analysis, showed that this stress concentration has little e�ect on the results

presented in this paper.
11 The transverse displacements shown in Fig. 18 at the original axial location of 20 do not equal the prescribed displacement

because this ®gure shows the transverse displacement at the top of the beam and the prescribed displacement is applied at the bot-

tom of the beam. The di�erence between the two is due to rotations and strain of the beam in the transverse direction.
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nondimensionalized free end displacement, d/h, of 10. In this ®gure the results for the TE1
and the TE2

constitutive equations cannot be distinguished from the results for the fully nonlinear constitutive
equation. Fig. 19 shows the non-zero components of the Cauchy stresses along the top of the beam.
Here it is also di�cult to distinguish the results for the TE1

and the TE2
constitutive equations from the

fully nonlinear results. Note that the average12 magnitude of the strain obtained using the fully
nonlinear constitutive equation in this case is 2.2% and the average magnitude of P is about 75.7%.
Fig. 20 shows the magnitude of the rotations and the strains along the top of the beam. Once can see
that the rotations for the cantilever beam problem are signi®cantly larger than for either the axial shear
or the circular shear problem by comparing Fig. 20 to Figs. 6 and 13.

The percent di�erences for the displacement are shown in Fig. 21. The percent di�erences in the axial
displacement for the TE1

and the TE2
constitutive equations are so small that they cannot be

Fig. 21. Percent di�erence in components of displacement for a cantilever beam of generalized Blatz±Ko material with f = 0 in

bending.

12 This average is an average over the top of the beam, i.e., the magnitude is calculated at a number of points evenly distributed

over the top of the beam and averaged.
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distinguished from the horizontal axis. As expected, because of the boundary conditions on the
transverse displacement, the percent di�erences in the axial components of the displacement are much
larger than in the transverse components of the displacements. The percent di�erences in the non-zero
components of the Cauchy stresses along the top of the beam are shown in Fig. 22.

By examining these ®gures, it can be seen that for both the displacements and the stresses, the TE1

and the TE2
constitutive equations give results with much smaller percent di�erences than the TH

constitutive equation, and in particular the TE1
constitutive equation produces the smallest percent

di�erences. For example, if each of the components of the displacement and stress are to be limited to

Fig. 22. Percent di�erence in components of Cauchy stress for a cantilever beam of generalized Blatz±Ko material with f = 0 in

bending.
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percent di�erences of less than 5%, the TH constitutive equation can only be used to a maximum value
of vE1v of 0.7%. On the other hand, the TE1

and the TE2
constitutive equations can be used to a

maximum value of vE1v of over 10%. That the TE1
constitutive equation gives slightly better results than

the TE2
constitutive equation can be seen by noting that if the percent di�erences are limited to be less

than 1%, the TE1
constitutive equation can be used up to a maximum value of vE1v of 6.1% while the

TE2
constitutive equation can be used to a maximum value of only 4.8%.

7.2. Harmonic material

The percent di�erences obtained in the components of the displacement and stress using the second-
order constitutive equations for the cantilever beam made of harmonic material are shown in Figs. 23
and 24, respectively. Clearly, for the components of both the displacement and the stress, the TE1

and

Fig. 23. Percent di�erence in components of displacement for a cantilever beam of harmonic material in bending.
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the TE2
constitutive equations both give much better results than the TH constitutive equation. For

example, if the percent di�erences in all the components of the stresses and the displacements are limited
to 5%, then the TH constitutive equation can only by used up to a maximum value of vE1v of only 0.6%
while both the TE1

and the TE2
constitutive equations can be used up to values of vE1v of over 10%.

Even if the percent di�erences are limited to 1%, the TE1
and the TE2

constitutive equations can still be
used up to values of vE1v of over 10% which corresponds to a free end de¯ection, d, of over 15 times the
height of the beam. Recall that the original length of the beam is only 20 times the height of the beam;

Fig. 24. Percent di�erence in components of Cauchy stress for a cantilever beam of harmonic material in bending.
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this suggest that these constitutive equations are useful even for a severely deformed beam. If all the
components are taken into account, the TE1

constitutive equation gives slightly better results than the
TE2

constitutive equation although for some of the components the TE2
constitutive equation gives better

results than the TE1
constitutive equation.

7.3. Summary: bending of a cantilever beam

The cantilever beam problem illustrates two main points:

. As expected, when the rotation in a body is large, the TH constitutive equation is unusable.

. The TE1
and the TE2

constitutive equations, and particularly the TE1
constitutive equation, can be

extremely good approximations to the fully nonlinear constitutive equations for problems where the
deformations are dominated by the rotation rather than by the strain.

8. Summary and discussion of results

In this paper we examined the performance of several second-order constitutive equations in four
di�erent boundary value problems over a range of strains and rotations. Our goal was to gain some
understanding of the circumstances under which such second-order constitutive equations can be used in
lieu of fully nonlinear constitutive equations.

The results presented in Sections 4±7 illustrate that there are two factors that play a major role in
determining which second-order constitutive equation provides the best approximation to the fully
nonlinear constitutive equation: the mechanical nature of the material and the class of deformations that
is to be modeled. The nature of the material (meaning here the nature of the fully nonlinear constitutive
equation) has a primary e�ect on the accuracy of the second-order constitutive equations. In our
examples, solutions obtained with the second-order approximations to the harmonic material achieved
greater accuracy than did the solutions calculated with the second-order approximations to the Blatz±
Ko material in every problem but one13. In addition to in¯uencing the overall level of accuracy, the
nature of the material a�ects the relative performance of the second-order constitutive equations. This is
made evident by comparing the TH and the TE1

constitutive equations for the two materials. For the
Blatz±Ko material, as long as the rotations are small, the TH constitutive equation gives greater
accuracy than does the TE1

constitutive equation. The consummate example is found in the problem of
the axial shear of a cylinder for the Blatz±Ko material with the parameter f = 1; in this case the TH

constitutive equation is exact because the deformation is isochoric. In contrast, for the harmonic
material the TE1

constitutive equation gives equally as good or better results than does the TH

constitutive equation in every problem. The impact of the material on the relative performance of the
second-order constitutive equations can also be seen by comparing the results for the TE1

and the TE2

constitutive equations. For the Blatz±Ko material, the TE1
constitutive equation gives more accurate

solutions than does the TE2
constitutive equation for all of the components of the displacement and

stress, but for the harmonic material the results obtained with the TE1
constitutive equation are more

accurate for about half of the components and less accurate for the other components. However, we
note that at any given magnitude of strain, the largest percent di�erence of the TE1

solution is less than

13 That exception is the bending of a beam with the TH constitutive equation. In that problem the rotations are the dominating

factor.
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the largest percent di�erence of the TE2
solution. So the TE1

constitutive equation gives a more accurate
solution overall.

The second factor that must be considered when choosing a second-order constitutive equation is the
class of deformations that is to be modeled. If it is known in advance that the rotations in a particular
problem will be small, the ease of implementing the TH constitutive equation may make it attractive to
use. However, as the examples in this paper illustrate, if the deformation produces moderate to large
rotations, the constitutive equation must be frame indi�erent, so the TH constitutive equation should
not be used. This consideration can override any advantage that the TH constitutive equation may seem
to have for describing a particular material. For example, in the axial shearing problem where the
rotations are small, the TH constitutive equation produces the most accurate solution for the generalized
Blatz±Ko material. On the other hand, for the circular shearing problem, where the rotations are only
slightly larger, the TH constitutive equation gives a less accurate solution than does the TE1

constitutive
equation. In bending of a cantilever beam, where the rotations are very signi®cant, the results obtained
with the TH constitutive equation are as much as an order-of-magnitude less accurate than the results
obtained with either the TE1

or the TE2
constitutive equations.

One additional factor that a�ects the range of strains for which a second-order constitutive equation
can be applied is the loss of smooth solutions to the governing equations. Recall in the problem of a bar
in simple tension, that for extensions above a certain critical level it is not possible to obtain a real
solution with any of the second-order theories, even though solutions can be obtained for any strain
with the fully nonlinear constitutive equation. In the other problems as well, it was not possible to
obtain smooth solutions to the governing di�erential equations under certain circumstances. The critical
strain at which it is no longer possible to obtain a smooth solution is smaller for the TE2

constitutive
equation than for either the TH or the TE1

constitutive equations. It should be noted, however, that the
solutions obtained with the second-order constitutive equations di�er substantially from the solution
provided by the fully nonlinear constitutive equation long before this critical strain is reached.

In summary, the constitutive equation which is second order in the displacement gradient is not frame
indi�erent, and therefore, leads to very large percent di�erences in problems with even moderate
rotations. The constitutive equation which is second order in the Green strain is signi®cantly less
accurate than is the constitutive equation which is second order in the Biot strain. Thus, of the
constitutive equations considered, the constitutive equation which is second order in the Biot strain
provides the best approximation of the mechanical behavior of the nonlinear Blatz±Ko and harmonic
materials over a large range of strains and rotations. With the criterion that each component of the
predicted displacement and the predicted stress be accurate to within 5% of the value determined with
the fully nonlinear constitutive equation, the TE1

constitutive equation can be used to strains of 10 to
20% in each of the problems presented in Sections 4±7.

In this paper we considered only second-order constitutive equations for the Cauchy stress because of
this stress measure's clear physical interpretation as the stress in the deformed body. The response
function for other measures of stress can similarly be expanded to second order; and these expressions
yield di�erent second-order constitutive equations (Ogden, 1984, p. 350). We obtained the second-order
constitutive equations in the displacement gradient, the Biot strain, and the Green strain for both the
®rst Piola±Kirchho� stress and the second Piola±Kirchho� stress. The boundary value problems
presented in Sections 4±7 were solved with these constitutive equations. The results showed that the
choice of the stress measure does result in larger percent di�erences in the solutions for some of the
problems and smaller percent di�erences in the solutions of other problems. But in all problems, the
constitutive equation which is second order in the Biot strain still produces the most accurate results
over the widest range of strains and rotations.

In order to determine whether a speci®c second-order constitutive equation provides a su�ciently
good model of mechanical behavior for a real material in a particular deformation regime, it is, of
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course, necessary to compare the predictions of that second-order constitutive equation with
experimental results. But, in the absence of such experimental information, the examples presented in
this paper suggest that for elastic materials with properties similar to the Blatz±Ko and the harmonic
materials, the constitutive equation which is second-order in the Biot strain is the most accurate over the
largest range of strains and rotations.

Acknowledgements

This work was funded by Grant CMS 9634903 from NSF.

References

Abeyaratne, R., Horgan, C.O., 1984. The pressurized hollow sphere problem in ®nite elastostatics for a class of compressible

materials. International Journal of Solids and Structures 20, 715±725.

Beatty, M.F., Stalnaker, D.O., 1986. The Poisson function of ®nite elasticity. Journal of Applied Mechanics 53, 807±813.

Beatty, M.F., 1987. Topics in ®nite elasticity: hyperelasticity of rubber, elastomers, and biological tissues Ð with examples.

Applied Mechanics Reviews 40, 1699±1734.

Blatz, P.J., Ko, W.L., 1962. Application of ®nite elastic theory to the deformation of rubbery materials. Transactions of the

Society of Rheology 6, 223±251.

Ciarlet, P.G., 1988. Mathematic Elasticity. Elsevier, Amsterdam.

Gurtin, M., 1984. Introduction to Continuum Mechanics. Academic Press, London.

Haughton, D.M., 1993. Shearing of compressible elastic cylinders. Quarterly Journal of Mechanics and Applied Mathematics 49,

471±486.

Haughton, D.M., Lindsay, K.A., 1993. The second-order deformation of a ®nite compressible isotropic elastic annulus subjected to

circular shearing. Proceedings of the Royal Society of London Series A 442, 621±639.

Haughton, D.M., Lindsay, K.A., 1994. The second-order deformation of a ®nite incompressible isotropic elastic annulus subjected

to circular shearing. Acta Mechanica 104, 125±141.

Hoger, A., 1993. Residual stress in an elastic body: a theory for small strains and arbitrary rotations. Journal of Elasticity 31, 1±

24.

Hoger, A., 1998. A second-order constitutive theory for hyperelastic materials. International Journal of Solids and Structures 36,

847±868.

Humphrey, J.D., 1995. Mechanics of the arterial wall: review and directions. Critical Reviews in Biomedical Engineering 23, 1±162.

Jafari, A.H., Abeyaratne, R., Horgan, C.O., 1984. The ®nite deformation of a pressurized circular tube for a class of compressible

materials. Zeitschrift fuÈ r Angewandte Mathematik und Physik 35, 227±246.

John, F., 1960. Plane strain problems for a perfectly elastic material of harmonic type. Communications on Pure and Applied

Mathematics 13, 239±296.

John, F., 1966. Plane elastic waves of ®nite amplitude: Hadamard materials and harmonic materials. Communications of Pure and

Applied Mathematics 19, 309±341.

Kirchho�, G., 1852. UÈ ber die Gleichungen des Gleichgewichts eines elastischen KoÈ rpers bei nicht unendlich kleinen

Verschiebungen seiner Theile. Sitzgsber. Akad. Wiss. Wien 9, 762±773.

Knowles, J.K., Sternberg, E., 1975a. On the singularity induced by certain mixed boundary conditions in linearized and nonlinear

elastostatics. International Journal of Solids and Structures 11, 1173±1201.

Knowles, J.K., Sternberg, E., 1975b. On the ellipticity of the equation of nonlinear electrostatics for a special material. Journal of

Elasticity 5, 341±361.

Lindsay, K.A., 1992. The second-order deformation of an incompressible isotropic slab under torsion. Quarterly Journal of

Mechanics and Applied Mathematics 45, 529±544.

Malvern, L.E., 1969. Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Englewood Cli�s, NJ.

Murnaghan, F.D., 1937. Finite deformations of an elastic solid. American Journal of Mathematics 59, 235±260.

Murnaghan, F.D., 1951. Finite Deformation of an Elastic Solid. Dover, New York.

Ogden, R.W., Isherwood, D.A., 1978. Solution of some ®nite plane strain problems for compressible elastic solids. Quarterly

Journal of Mechanics and Applied Mathematics 31, 219±249.

Ogden, R.W., 1984. Non-linear Elastic Deformations. Ellis Horwood, Chichester, Great Britain.

T.J. Van Dyke, A. Hoger / International Journal of Solids and Structures 37 (2000) 5873±59175916



Polignone, D.A., Horgan, C.O., 1992. Axisymmetric ®nite anti-plane shear of compressible nonlinearly elastic circular tubes.

Quarterly of Applied Mathematics 50, 323±341.

Polignone, D.A., Horgan, C.O., 1994. Pure azimuthal shear of compressible nonlinearly elastic circular tubes. Quarterly of Applied

Mathematics 52, 113±131.

Rivlin, R.S., 1952. The solution of problems in second-order elasticity theory. Journal of Rational Mechanics and Analysis 2, 53±

81.

de St Venant, A-J-C.B., 1844. Sur les pressions qui se deÂ veloppent aÁ l'inteÂ rieur des corps solides lorsque les deÂ placements de leurs

points, sans alteÂ rer l'eÂ lasticiteÂ , ne peuvent cependant pas eÃ tre consideÂ reÂ s comme treÁ s petits. Bull. Soc. Philomath. 5, 26±28.

Sheng, P-L., 1955. Secondary elasticity. Chinese Association of Advanced Science, Monograph Series 1, I, No. 1.

Toupin, R.A., Bernstein, B., 1961. Sound waves in deformed perfectly elastic materials: acousto-elastic e�ect. Journal of the

Acoustical Society of America 33, 216±225.

Truesdell, C., Toupin, T., 1960. The classical ®eld theories. In: Handbuch der Physik. III/1. Springer-Verlag, Berlin.

Truesdell, C., Noll, W., 1965. The non-linear ®eld theories of mechanics. In: Handbuch der Physik. III/3. Springer-Verlag, Berlin.

Wineman, A.S., Waldron Jr, W.K., 1995. Normal stress e�ects induced during circular shear of a compressible non-linear elastic

cylinder. International Journal of Non-Linear Mechanics 30, 323±339.

T.J. Van Dyke, A. Hoger / International Journal of Solids and Structures 37 (2000) 5873±5917 5917


